Sign In
Not register? Register Now!
Essay Available:
You are here: HomeEditingEngineering
Pages:
48 pages/≈13200 words
Sources:
16 Sources
Level:
Other
Subject:
Engineering
Type:
Editing
Language:
English (U.S.)
Document:
MS Word
Date:
Total cost:
$ 291.6
Topic:

Editing An D Correcting Mosty On Grammar And Redoing Data Analysis (Editing Sample)

Instructions:

editing an d correcting mosty on grammar and redoing data analysis

source..
Content:
ABSTRACT
There is a strong challenge for controlling the excess runoff from impervious surfaces. The frequency and intensity of flood may increase by changing climate as well as rapid urbanization. One of the best approaches is low impact development (LID) practices using green infrastructures (GIs). However, to evaluate the benefits of GIs is not an easy task due to parametric issues relating to GIs and sub-catchments. The goal of this study is to provide a practical guideline to parameterize and simulate popular GIs in residential areas. EPA Storm Water Management Model (SWMM) was selected as a test simulator due to its awareness by water resources engineers. Bio-retention cells and rain barrels are identified as popular GIs in many Cleveland areas. A residential sub-catchment in Parma, Ohio was selected for demonstration examples. The hydrologic properties of a sub-catchment and sewer networks were determined using Cuyahoga County Geographic Information System. GIs (bio-retention cells and rain barrels) were carefully parameterized into SWMM LID modules through field survey and existing related report. All step-by- step procedures were well documented. SWMM parameters were calibrated using the observed rainfall-runoff events with and without GIs. Finally, the calibrated models are used to evaluate the effects of GIs on existing storm water drainage networks under various rainfall scenarios (10-, 25-, and 50-year return periods). The guideline developed in this study are easily applicable to other similar watersheds to evaluate or design GIs.
TABLE OF CONTENTS
TOC \o "1-3" \u ABSTRACT PAGEREF _Toc469026142 \h iv
TABLE OF CONTENTS PAGEREF _Toc469026143 \h v
LIST OF TABLES PAGEREF _Toc469026144 \h vii
LIST OF FIGUREURES PAGEREF _Toc469026145 \h viii
CHAPTER I PAGEREF _Toc469026146 \h 1
INTRODUCTION PAGEREF _Toc469026147 \h 1
1.1Background PAGEREF _Toc469026148 \h 1
1.2Research Questions PAGEREF _Toc469026149 \h 4
1.3Research Objectives PAGEREF _Toc469026150 \h 5
1.4Literature Review PAGEREF _Toc469026151 \h 6
1.5Organization of the Thesis PAGEREF _Toc469026152 \h 11
CHAPTER II PAGEREF _Toc469026153 \h 12
STUDY AREA AND DATA PAGEREF _Toc469026154 \h 12
2.1Site Description PAGEREF _Toc469026155 \h 12
2.2Data Collection PAGEREF _Toc469026157 \h 15
CHAPTER III PAGEREF _Toc469026158 \h 16
3.1Stormwater Management Model (SWMM) PAGEREF _Toc469026159 \h 16
3.2 Low Impact Development (LID) Controls PAGEREF _Toc469026160 \h 21
3.2.1Bio-retention PAGEREF _Toc469026161 \h 21
3.2.2 Rain Barrel PAGEREF _Toc469026162 \h 29
3.3 Model Setup in SWMM PAGEREF _Toc469026163 \h 32
3.4 Simulation Scenarios PAGEREF _Toc469026164 \h 38
3.5 Parameter Calibration PAGEREF _Toc469026165 \h 42
CHAPTER IV PAGEREF _Toc469026166 \h 43
RESULTS AND DISCUSSION PAGEREF _Toc469026167 \h 43
4.1 Calibration PAGEREF _Toc469026168 \h 43
4.2 Model Results PAGEREF _Toc469026169 \h 45
4.2.1 Total volume PAGEREF _Toc469026170 \h 45
4.2.2 Peak storm flow PAGEREF _Toc469026171 \h 45
4.2.3 Water Surface Profile PAGEREF _Toc469026172 \h 47
CHAPTER V PAGEREF _Toc469026173 \h 49
SUMMARY AND CONCLUSION PAGEREF _Toc469026174 \h 49
REFERENCES PAGEREF _Toc469026175 \h 52
APPENDICES PAGEREF _Toc469026176 \h 56
LIST OF TABLEs
TOC \h \z \c "Table" Table 1. Subcatchment characteristics as defined in SWMM5 PAGEREF _Toc471086717 \h 27
Table 2. Bio-retention parameters represented in SWMM5 PAGEREF _Toc471086718 \h 36
Table 3. Parameters to be considered for different cases PAGEREF _Toc471086719 \h 38
Table 4. Street Conduit shape information PAGEREF _Toc471086720 \h 43
Table 5. Precipitation depth (mm) for different return periods PAGEREF _Toc471086721 \h 44
Table 6. Simulation scenario PAGEREF _Toc471086722 \h 46
Table 7. Calibrated parameters of the street PAGEREF _Toc471086723 \h 51
Table 8. Total volume for different return periods PAGEREF _Toc471086724 \h 54
Table 9. Peak flow for different return periods. PAGEREF _Toc471086725 \h 54
Table 10. Subcatchment properties used in SWMM model. PAGEREF _Toc471086726 \h 67
Table 11. Subcatchment Properties used in SWMM model PAGEREF _Toc471086727 \h 67
Table 12. Junction Information PAGEREF _Toc471086728 \h 68
Table 13. Conduit Information PAGEREF _Toc471086729 \h 68
Table 14. Bio-retention properties PAGEREF _Toc471086730 \h 69
LIST OF FIGUREs
TOC \h \z \c "Figure" Figure 1. Location of Klusner Street in Parma, Ohio PAGEREF _Toc471086746 \h 22
Figure 2. Screen shot of a) Junction drawings and b) Calculations made using Cuyahoga County GIS PAGEREF _Toc471086747 \h 24
Figure 3. Nonlinear reservoir model of a sub-catchment (Rossman, 2010) PAGEREF _Toc471086748 \h 26
Figure 4. (a) Route impervious to pervious (b) LID as separate catchment (c) LID included in the catchment PAGEREF _Toc471086749 \h 29
Figure 5. LID Control Editor in SWMM5 PAGEREF _Toc471086750 \h 35
Figure 6. Parameter representation of bio-retention in SWMM5 PAGEREF _Toc471086751 \h 35
Figure 7. Rain barrel parameters PAGEREF _Toc471086752 \h 39
Figure 8. Rain Barrel Control Editor in SWMM5 PAGEREF _Toc471086753 \h 40
Figure 9. Schematic Diagram of the sub-basin a) Traditional sub-basin b) New Approach model PAGEREF _Toc471086754 \h 42
Figure 10. Rainfall Hyetographs a) 1yr- 25mm b) 2yr-31mm c) 5yr-39mm d)10yr-45mm e) 25yr-53mm f) 50 yr-59mm PAGEREF _Toc471086755 \h 45
Figure 11. SWMM diagram for the Klusner area a) west side of the street, b) east side of the street PAGEREF _Toc471086756 \h 47
Figure 12. Screenshot of LID usage editor in SWMM5 PAGEREF _Toc471086757 \h 49
Figure 13. A) Shows the predicted with observed peak storm flow (Jarden et. al, 2015) and B) Scatter Plot of predicted and observed data PAGEREF _Toc471086758 \h 53
Figure 14. SWMM Peak flow comparison with and without LIDs for a) 1yr-1hr b) 2yr-1hr c) 5yr-1hr d) 10yr-1hr e)25yr-1hr f) 50yr-1hr PAGEREF _Toc471086759 \h 55
Figure 15. Water surface profile captured at the peak flow for a) 50yr-1hr b) 25yr-1hr PAGEREF _Toc471086760 \h 57
CHAPTER I
INTRODUCTION
1 Background
Urbanization refers to the increase of population living in urban areas. In 1800, only 3% of the population lived in urban areas. Historically, the human population has lived in rural areas and been dependent on agriculture. The world has experienced an unexpected growth of urbanization in recent decades which has caused the natural landscapes to transform to impervious land covers. Impervious land cover occurs when the soil is covered by impermeable materials, such as asphalt or concrete. Natural landscapes are shifted to impervious covers due to urbanization.
Impervious cover is now an environmental concern. The impervious areas are responsible for more storm water runoff than any other land use. It modifies the hydrologic cycle and affects urban a...
Get the Whole Paper!
Not exactly what you need?
Do you need a custom essay? Order right now:

Other Topics:

Need a Custom Essay Written?
First time 15% Discount!